
   

Product Validation Report V2.1   Page 1 of 54 

 

   

 

Sentinels4Carbon (Sense4Fire) 

Sentinel-based fuel, fire and emissions products 

to constrain the changing role of vegetation fires 

in the global carbon cycle 

ESA Contract Number: 4000134840/21/I-NB 

 

Product Validation Report Version 2.1 

 (PVRv2.1) 

7 May 2023, Version 2.1 

 

 

Prepared by: 

Matthias Forkel, Christine Wessollek, Daniel Kinalczyk, Christopher Marrs 

Technische Universität Dresden, Faculty of Environmental Sciences, Dresden, Germany 

Vincent Huijnen, Jos de Laat 

Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands 

Niels Andela, Alfred Awotwi 

Cardiff University, School of Earth and Environmental Sciences, Cardiff, Wales, UK 

 

  



   

Product Validation Report V2.1   Page 2 of 54 

 

Contents 

Contents .......................................................................................................................................... 2 

Figures ............................................................................................................................................. 3 

Tables .............................................................................................................................................. 5 

Acronyms ........................................................................................................................................ 6 

1 Introduction ............................................................................................................................ 7 

2 GFA-S4F: Burned area and fire behaviour .......................................................................... 8 

2.1 Tracking fire objects ....................................................................................................... 8 

2.2 Fire type classification.................................................................................................... 8 

2.3 Burned area estimates ................................................................................................ 12 

3 TUD-S4F: Fuel loads, moisture content, fuel consumption and fire emissions .......... 13 

3.1 Conducted calibration/validation activities in PVRv2.1 ........................................... 13 

3.1.1 Overview ........................................................................................................................ 13 

3.1.2 Satellite-based input and calibration datasets .............................................................. 14 

3.1.3 Calibration and validation against databases of ground observations ......................... 15 

3.2 Comparison of canopy height input datasets .......................................................... 17 

3.3 Calibration and validation of the S4F model ............................................................ 19 

3.3.1 Training regression models for prior estimates for canopy height ............................... 19 

3.3.2 Calibration against BAAD for biomass components ...................................................... 21 

3.3.3 Calibration for prior estimates of regional above-ground woody biomass .................. 22 

3.3.4 Prior estimates for live-fuel moisture content .............................................................. 23 

3.3.5 Fire event-based retrieval of fuel and fire dynamics .................................................... 24 

3.3.6 Validation of fuel loads .................................................................................................. 27 

3.3.7 Validation of fuel consumption ..................................................................................... 29 

3.3.8 Combustion efficiency and emission factors ................................................................. 30 

3.3.9 Example results from the S4F data-model fusion approach ......................................... 31 

4 Top-down constraints on fire emissions .......................................................................... 34 

4.1 Theoretical baseline ..................................................................................................... 34 

4.2 Input data ...................................................................................................................... 35 

4.3 Methods ......................................................................................................................... 38 

4.4 Validation approach ..................................................................................................... 39 

4.5 IFS baseline results with GFAS and Sense4Fire emissions ..................................... 40 

4.6 IFS sensitivity simulations results .............................................................................. 44 



   

Product Validation Report V2.1   Page 3 of 54 

 

4.7 Intercomparison and optimization of fire emissions .............................................. 46 

4.8 Discussion ...................................................................................................................... 48 

4.8.1 Limitations and gap analysis .......................................................................................... 48 

4.8.2 Case-based analysis ....................................................................................................... 48 

5 Summary and future developments ................................................................................. 52 

References .................................................................................................................................... 52 

 

Figures 

Figure 1: Example highlighting how fire type can be interpreted from 10-m resolution pre- 

and post-fire Sentinel-2 image pairs. ........................................................................................ 11 

Figure 2: (a) Burned area estimates for southern hemisphere Brazil (0-25°S), and (b) 

burned area estimates for the southern-hemisphere Brazilian Amazon. .......................... 12 

Figure 3: Burned area estimates for several clusters of fires in the boreal Russia highlight 

close correspondence between our burned area estimates and those from Sentinel-2 for 

forested systems in the boreal region...................................................................................... 13 

Figure 4: Overview of the sampled grid cells within study regions/test areas for the 

calibration and validation exercises of the S4F model in PVRv2.1. ...................................... 17 

Figure 5: Pairwise comparison of canopy height datasets for the Amazon test area ....... 18 

Figure 6: Pairwise comparison of canopy height datasets for the southern Africa test area.

 ........................................................................................................................................................ 19 

Figure 7: Comparison of residuals between estimated canopy height from the S4F model 

and from the GEDI L3 Gridded Land Surface Metrics product. ............................................ 20 

Figure 8: Comparison of the cost of the S4F model for the Amazon study region prior and 

after calibration against the BAAD database of total above-ground biomass (BMagb) ... 21 

Figure 9: Scatterplots of estimated biomass compartments (kg m-2) from the S4F model 

(y-axis) against measurements of the BAAD database (x-axis) after optimisation for leaf 

biomass (upper row) and woody biomass (lower row).......................................................... 22 

Figure 10: Comparison of residuals between estimated above ground woody biomass 

from the S4F model and from the ESA CCI biomass dataset (year 2018). .......................... 23 

Figure 11: Performance of the S4F model in reproducing LFMC from site observations of 

forbs, grass, shrubs, broad-leaved and needle-leaved trees in the south-western United 

States. ............................................................................................................................................ 23 

Figure 12: Example of the estimated fuel and fire dynamics from the S4F model for one 

example grid cell in the Amazon test area (53.96726°W, 10.654762°S). ............................. 25 

Figure 13: Performance of the S4F model across 353 fire events in the Amazon test area 

based on event-level calibration ............................................................................................... 26 



   

Product Validation Report V2.1   Page 4 of 54 

 

Figure 14: Temporal correlation between estimated LFMC and VOD from the S4F model

 ........................................................................................................................................................ 26 

Figure 15: Comparison of estimated and observed FRE........................................................ 27 

Figure 16: Validation of the estimated fuel loads from the S4F model against 

measurements from the global database of litter fall masses and from the fuel 

consumption database. .............................................................................................................. 28 

Figure 17: Distribution of fuel loads for the Amazon study region for the same 

measurement locations from the global database of litter fall masses (H14) and from the 

fuel consumption database (W22) and grid cells from the S4F model using the ESA CCI 

land cover map (S4F.CCI) and the land cover map by Song et al. (S4F.S) as input. ........... 29 

Figure 18: Validation of fuel consumption from the S4F model ........................................... 30 

Figure 19: Validation of the modified combustion efficiency (MCE) and of the emission 

factors of CO2, CO and NOx from S4F model before and after optimisation .................... 31 

Figure 20: Example of fuel consumption and fire emissions derived with the S4F data-

model fusion approach in a part of the Amazon test area at a spatial resolution of 333 x 

333 m for a period between 11th and 20th October 2016. ..................................................... 32 

Figure 21: Continental results from the S4F data-model fusion approach for the Amazon 

study region for the period 10th-20th September 2020. ......................................................... 33 

Figure 22: Time series of CO emissions for the year 2020 in the Amazon study region from 

the GFED VIIRS NRT product from globalfiredata.org and derived with the S4F model with 

using the ESA CCI land cover as input (S4F.CCI) and the land cover dataset by Song (S4F.S).

 ........................................................................................................................................................ 34 

Figure 23: Comparison of IFS simulated tropospheric NO2 columns with GFAS emissions.

 ........................................................................................................................................................ 40 

Figure 24: Probability distribution IFS simulated and Sentinel-5p observed tropospheric 

NO2 columns for the originally selected Sense4Fire Amazon test area .............................. 42 

Figure 25: As Figure 24 but for the larger Amazon region as shown in Figure 23. ............ 42 

Figure 26: As Figure 25 but for carbon monoxide total columns and for the larger Amazon 

region shown in Figure 23 .......................................................................................................... 42 

Figure 27: Left plot as in Figure 24 for the baseline GFAS emission but for NO2 tropospheric 

columns and for the larger Amazon region shown in Figure 25. The right plot histogram 

colour coding displays the average GFAS NO2 emission rate for each histogram interval. 

Figure based on all daily data in the period August-September 2020. ............................... 43 

Figure 28: as in Figure 25 for four IFS sensitivity simulations and for the Amazon study 

region. All daily data in the period August-September 2020. ............................................... 45 

Figure 29: As Figure 23 (10 September 2020) but for the IFS sensitivity simulation T5 with 

S4F NO2 emissions limited to a maximum of 3×10-10 kg m-2 s-1 (expid b2c6). .................... 46 



   

Product Validation Report V2.1   Page 5 of 54 

 

Figure 30: Intercomparison of GFAS, CU-FRP KNMI-S5p and TUD-S4F (TUD-S4F.S using 

Song et al. land cover as input) estimates of CO emissions over the Amazon, August-

October 2020. ............................................................................................................................... 47 

Figure 31: Left: monthly mean Sentinel-5p observations of tropospheric NO2 for 

September 2020. Middle: Model bias using standard GFAS andGFA-S4F-FRP emissions 

over the Amazon. Right: model bias when using KNMI-S5p-based optimised fire 

emissions. ..................................................................................................................................... 47 

Figure 32: Intercomparison of GFAS, TUD-S4F (using Song land cover) and GFA-S4F-FRP 

(CU-FRP) estimates of NOx emissions (Tg NO/day) ................................................................ 48 

Figure 33: IFS/GFAS simulated tropospheric NO2 columns ................................................... 50 

Figure 34: ESA CCI Vegetation type for the area and date presented in Figure 33. .......... 50 

Figure 35: Sentinel-5p orbit-level tropospheric NO2 columns .............................................. 51 

Figure 36: IFS simulation for the same date and region as Figure 33 but with Sense4Fire 

(University Cardiff) NO2 emissions. ........................................................................................... 51 

Tables 

Table 1: Fire types by study region. ............................................................................................ 9 

Table 2: Accuracy assessment based on 100 Amazon deforestation and 100 Amazon 

forest fires. .................................................................................................................................... 10 

Table 3: Statistics of the three canopy height datasets for the Amazon test area. ........... 17 

Table 4: Statistics of the three canopy height datasets for the southern Africa test area.

 ........................................................................................................................................................ 18 

Table 5: Performance statistics of ten regression models to estimate canopy height from 

mean or maximum LAI and fractional tree cover. Correlation (r) and root mean squared 

error (RMSE) between canopy height from the GEDI L3 Gridded Land Surface Metrics 

product and the regression model. .......................................................................................... 20 

Table 6: Performance statistics of the prior S4F model to estimate above-ground woody 

biomass in comparison to the ESA CCI biomass map for the year 2018. ........................... 22 

  



   

Product Validation Report V2.1   Page 6 of 54 

 

Acronyms 

AAI Absorbing Aerosol Index 

AGB Above Ground Biomass 

AIC Akaike’s Information Criterion 

ALH Aerosol Layer Height 

ATBD Algorithm Theoretical Baseline Document 

BAAD Biomass and Allometry Database 

CAMS Copernicus Atmosphere Monitoring Service 

CCI Climate Change Initiative 

DRC Democratic Republic of Congo 

ESA European Space Agency 

GAM Generalised Additive Model 

GEDI Global Ecosystem Dynamics Investigation  

GFAS Global Fire Assimilation System  

GFED Global Fire Emission Database  

IFS Integrated Forecasting System 

LAI Leaf Area Index 

LFMC Live Fuel Moisture Content 

MOPITT Measurement of Pollution in the Troposphere 

OMI Ozone Monitoring Instrument 

PVP Product Validation Plan 

PVR Product Validation Report 

SLA Specific Leaf Area 

SMAP Soil Moisture Active Passive  

TROPOMI TROPOspheric Monitoring Instrument 

VIIRS Visible Infrared Imaging Radiometer Suite  

VOD Vegetation Optical Depth 

VODCA Vegetation Optical Depth Climate Archive 

WP Work Package 

  



   

Product Validation Report V2.1   Page 7 of 54 

 

1 Introduction 

This Product Validation Report version 2.1 (PVRv2.1) describes the strategy and results for 

product calibration and validation for methods and products that are developed within 

the ESA-funded Sense4Fire project: Sentinel-based fuel, fire and emissions products to 

constrain the changing role of vegetation fires in the global carbon cycle. The aim of 

Sense4Fire is to increase the scientific understanding of fire dynamics and their role in the 

carbon cycle by integrating observations from the Sentinels into new Earth observation 

products.  

The validation of data products is crucial for the evaluation of the complex production 

chain underlying the Sense4Fire project: That is, algorithms that combined data from 

either Sentinel 1-2-3 into data products, algorithms that merge those data products into 

emissions, CAMS/IFS model simulations that use those emissions to simulate the spatio-

temporal structure of the chemical composition of the atmosphere, and Sentinel-5p 

atmospheric composition data that is used to validate and re-calibrate those model 

simulation results. Differences between the CAMS/IFS model simulation and Sentinel-5p 

observations thus can be caused by one of the many processes in the Sense4Fire 

production chain. Hence the validation should not only focus on the comparison between 

model results and Sentinel-5p data, but also on the validation of individual data products 

further down the production chain. Understanding and quantifying errors and 

uncertainties is important to identify where and when the production chain can be 

improved. The validation may lead to immediate data product improvement, but equally 

to identification of data product limitations that cannot be immediately resolved and 

require additional action. The latter will find its way into a gap analysis that will be part of 

the PVR and final project report. The gap analysis can be used to initiate or support 

additional research and development activities beyond the Sense4Fire project end. 

PVRv2.1 builds on the description of methods and algorithms from the Algorithm 

Theoretical Baseline Document version 2.1 (ATBDv2.1). ATBDv2.1 describes the used 

datasets and methods and hence PVRv2.1 describes calibration/validation strategy and 

initial results for selected test areas and for the Brazilian study region. An overview of the 

study regions and test areas is provided Chapter 2 in the ATBDv2.1.  

The following chapters present validation and benchmarking results for the different 

approaches developed in Sense4Fire:  

 GFA-S4F is based on the Global Fire Atlas (GFA) algorithm (Andela et al., 2019, 

2022) and uses observations of active fires from the VIIRS and Sentinel-3 SLSTR 

instruments with a new fire type map to estimate fire emissions. Chapter 2 

presents validation results for the classification of fire types. 

 TUD-S4F is a new data-model fusion approach that combines several datasets 

from Sentinel-3 and other Earth observation products to estimate fuel loads, fuel 

moisture, fuel consumption, and fire emissions. Chapter 3 presents calibration, 

test and validation results of the S4F model with respect to tree height, biomass 
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compartments, fuel moisture content, litter and woody debris and fuel 

consumption, and emission factors. 

 KNMI-S5p is based on observation from Sentinel-5p, whereby fire emissions of 

CO and NOx are estimated using a top-down approach. In Chapter 4, we then the 

first validation results of estimates of fire emissions from a top-down approach 

using Sentinel-5p observations. 

2 GFA-S4F: Burned area and fire behaviour 

This project component aims to deliver three products. First, we track individual fire 

perimeters as objects at a daily temporal resolution. Second, we classify these objects as 

specific fire types, for example forest, deforestation, or savannah fires. Third, we estimate, 

and scale burned area for each object, a critical step for estimating fire emissions. Each 

step requires training and quality assessment, training efforts are clarified in the ATBDv2 

and details about quality assessment are provided here.  

2.1 Tracking fire objects 

Our aim is to identify individual wildfires and track the daily expansion of the fire 

perimeter. Defining a ‘wildfire’ itself can be difficult at times, as each continuous burned 

area can include multiple ignition locations sometimes driven by the fire itself (e.g., 

spotting). The precise definition of fire objects, and subsequent estimates of fire 

perimeters, has an indirect influence on our emissions estimates as it determines the 

aggregate fire properties and therefore the fire type and attributed burned area of each 

object. Here we use the Global Fire Atlas algorithm (Andela et al., 2019) to track individual 

wildfires at each time step.  

In open cover types with rapid fire spread rates, active fire detections do not provide full 

coverage of the fire extent and fire events become fragmented in our approach. We do 

not account for this in our fire tracking algorithm, since the fire types for open cover are 

directly dependent on land cover type, but not fire behaviour or other fire attributes. 

Instead, we scale burned area for each object to provide robust estimates of burned area 

across larger scales. Given the large and long-term impacts of fires in forested systems on 

carbon emissions, our focus is on forest fires, which are generally well captured by active 

fire detections. Here we use our Sentinel-2 based burned area estimates (continuous 

burned area) in combination with visual interpretation of the burn date from the active 

fire detections to provide additional quality assessment of fire perimeters in closed cover 

types in addition to the assessment provided by Andela et al., 2019.  

2.2 Fire type classification 

Here we aim to differentiate eight different fire types (Table 1), with some fire types 

specific to one of the study regions and others more generic. Quality assessment of the 

fire type classification is based on pre- and post-fire Sentinel-2 pairs. To avoid issues 

related to class imbalance, we use a stratified random sample of relevant fire types for 

each region (~100 fires in each class) to assess the accuracy of our classification. Results 
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are presented both on a per fire-object basis and on a per active fire detection basis. Large 

fires are often better characterised and can therefore more accurately be attributed to a 

specific fire type, therefore the accuracy for active fire detections (closely related to 

carbon emissions) is often higher than that of individual events (including many small 

fires). Below, we provide an initial assessment of our capability to separate forest from 

deforestation fires in Brazil, the first two fire types in Table 1. 

Table 1: Fire types by study region. 

Fire type Study region Tree cover fraction (%) 

Evergreen broadleaf forest fires Brazil ≥50% 

Deforestation fires Brazil ≥50% 

Small clearing and agricultural fires Brazil ≥50% 

Boreal forest ground fires Russia ≥50% 

Boreal forest crown fires Russia ≥50% 

Woodland fires Africa ≥50% 

Savannah and grassland fires Brazil, Africa, Russia <50% 

Cropland burning Brazil, Africa, Russia <50% 

Separating forest from deforestation fires in Brazil 

We assessed the accuracy at which we can separate deforestation from understorey 

forest fires, two key Amazon fire types associated to forest degradation (Table 2 and 

Figure 1). Because of the class imbalance, with about five times more deforestation than 

forest fires, we took a stratified random sample of 100 deforestation and 100 understorey 

fires across the South American domain in 2019. We focused on fires that started in 

August, to avoid issues of cloud cover, and used nearest cloud free pre- and post-fire 

Sentinel-2 10m resolution images in time to interpret the reference fire type. In total, this 

resulted in a reference set of 194 fires across 118 image pairs after excluding one fire 

event due to cloud cover and five fire events due to inconclusive evidence of burning in 

the image pair. Overall, the accuracy of fire type classification improved with fire size. The 

overall accuracy was 66% (DICE coefficient of 0.66) for fire events and 92% for active fire 

detections (large fires include more active fire detections; Table 2). The largest difference 

in accuracy was observed for forest fires, with 55% User’s accuracy (reflecting commission 

error) for fire events increasing to 93% User’s accuracy for fire detections, likely indicating 

a more skewed distribution of fire size and associated fire detections compared to 

deforestation fires. Deforestation fire classification was more stable, with 78% User’s and 

63% Producer’s accuracy for fire events, and 87% User’s and 71% Producer’s accuracy for 

fire detections. 
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Table 2: Accuracy assessment based on 100 Amazon deforestation and 100 Amazon forest fires. The algorithm 

accurately separated most deforestation from understorey forest fires. (a) Accuracy assessment of fire events and 

(b) accuracy assessment of active fire detections. 

a) Fire events Reference data  

  Deforestation Forest Total User’s Accuracy 

Classification 

data 

Deforestation 75 21 96 78% 

Forest 44 54 68 55% 

Total 119 75 194  

 Producer’s accuracy 63% 72%   

 Overall Accuracy = 66% 

b) Fire detections Reference data  

  Deforestation Forest Total User’s Accuracy 

Classification 

data 

Deforestation 4,309 667 4,976 87% 

Forest 1,721 22,997 24,718 93% 

Total 6,030 23,664 29,694  

 Producer’s accuracy 71% 87%   

 Overall Accuracy = 92% 
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Figure 1: Example highlighting how fire type can be interpreted from 10-m resolution pre- and post-fire Sentinel-2 

image pairs. (a) Deforestation before fire; (b) Deforestation after fire; (c) Mixed forest and deforestation fire before 

(classified as forest fire) ); (d) Mixed forest and deforestation fire (classified as forest fire); (e) Forest fire before 

(classified as forest fire); (f) Forest fire after (classified as forest fire) 

  

(a) (b) 

(c) (d) 

(e) (f) 
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2.3 Burned area estimates 

To translate ‘fire polygons’ to fire emissions we quantify the burned area associated with 

each fire object. As can be seen in Figure 1, the 550 m (0.005º) spatial resolution of our 

approach can result in an overestimate of burned area for e.g., deforestation fires that 

often occur at smaller scales. In contrast, fast moving grassland and savannah fires often 

burn significant areas not captured with the three daily (1:30 am, 1:30 pm, and 10:00 pm) 

active fire observations. We therefore developed a strategy to scale burned area with 

large scaling factors (>1) required for open cover types and small scaling factors (<1) for 

some other fire types, like deforestation fires. Interestingly, we find that a scaling factor 

of one is appropriate for most forest fires, both in the tropics and at higher latitudes. Here 

we assess the quality of these scaled burned area estimates by comparison to Landsat 

based MapBiomas burned area estimates for Brazil (Figure 2). For the other regions, we 

create a Sentinel-2 based reference burned area dataset for 2020 using the BAMT 

approach developed by Roteta et al. (2021).  

For Brazil, we classified the MapBiomas burned area into burned area from different fire 

types. Continuous clusters of burned area were overlayed with fire perimeters derived 

here, and their fire type was assigned on the basis of the fire type that had most overlap 

with the burned area clusters. Burned-area clusters that remained entirely undetected by 

our approach were assigned to the savanna class if average tree cover was below 50% 

(consistent with our approach) or to a “residual” class if tree cover was above 50%. 

 

Figure 2: (a) Burned area estimates for southern hemisphere Brazil (0-25°S), and (b) burned area estimates for the 

southern-hemisphere Brazilian Amazon. Close comparison was found between regional burned area estimates 

from our approach and burned area from MapBiomas for most fire types, although we identified a larger area of 

forest fires. 

For boreal forest fires, our approach provides a close match to the reference burned area 

data as assessed using standard statistical metrics (slope, r2, RMSE) (Figure 3). For open 
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cover types we aim to quantify burned area at larger scales, in this case we provide 

standard metrics of quality assessment (User’s/Producer’s accuracy, precision and recall, 

and DICE coefficient) at relevant spatial scales. 

 

Figure 3: Burned area estimates for several clusters of fires in the boreal Russia highlight close correspondence 

between our burned area estimates and those from Sentinel-2 for forested systems in the boreal region. 

3 TUD-S4F: Fuel loads, moisture content, fuel consumption 

and fire emissions 

3.1 Conducted calibration/validation activities in PVRv2.1 

3.1.1 Overview 

Within Sense4Fire, two approaches are developed to estimate fuel loads. The first 

approach is a comprehensive but still simple Satellite data-based model of ecosystem 

Fuel load, Fuel moisture, Fuel consumption and Fire emissions (hereinafter referred as 

S4F model). The S4F model is solely driven by satellite products and is constrained by 

various satellite and ground observations. The second approach is a machine learning 

model (TUD-S4F) to estimate fuel loads by combining the fuel load information from the 

North American Wildland Fuel Database with satellite datasets. Combustion 

completeness, fuel consumption and fire emissions are also estimated within the S4F 

model based on its own estimates of fuel loads. Details of both approaches are presented 

in the ATBD (Sections 4.3 and 4.4 of ATBDv2.1). In this PVR, calibration and validation 

results for the both approaches are presented. Specifically, calibration and validation tests 

were performed for the estimation of canopy height (Section 4.3.2 of ATBDv2.1), tree 

biomass components (Section 4.3.3 of ATBDv2.1), surface litter and woody debris (Section 

4.3.5 of ATBDv2.1), fuel moisture and vegetation water content (Section 4.3.6 of 

ATBDv2.1), vegetation optical depth (Section 4.3.7 of ATBDv2.1), fuel loads, combustion 

completeness and fuel consumption (Sections 4.3.8 and 4.3.9 of ATBDv2.1), and of 

emission factors (Section 4.3.10 of ATBDv2.1) 
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3.1.2 Satellite-based input and calibration datasets  

The S4F model requires input data on land cover (i.e. fractional cover of trees ftree and 

herbaceous vegetation fherb), leaf area index (LAI), fractional vegetation cover (fCOVER), 

soil moisture (here Soil Water Index, SWI was used) and burned area in order to compute 

fuel loads, fuel moisture, fuel consumption and hence fire emissions. In addition, the SF4 

model can then calibrated at grid cell-level against further satellite datasets; here we used 

datasets of canopy height, above ground biomass, Ku-, X- and L-band Vegetation Optical 

Depth, Live-Fuel Moisture Content (LFMC), and Fire Radiative Energy (FRE). The processing 

and spatial resampling of the different resolutions of those datasets is explained in 

ATBDv2.1.  

The following datasets were used as input to the S4F model:  

 Land cover time series and of tree and herbaceous cover were taken from the PFT 

fractions derived from ESA CCI land cover map. All tree and shrub PFTs from the 

ESA CCI dataset were summed to calculate the total tree cover fraction (ftree). As 

the ESA CCI land cover map shows only little temporal variability at a resolution of 

300 x 300 m and hence might underestimate land cover changes, we made one 

additional model run in which we used the annual land cover data set by Song et 

al. (2018) as alternative input to the model.  

 LAI and fCOVER from Sentinel-3 OLCI and Proba-V Version 1.1 (Fuster et al., 2020) 

were used at the original resolution of 333 m and 10 day product. The LAI ranges 

from January 2014 to October 2021 (281 observations, 36 observations per full 

year). The spatial resolution of the LAI dataset was used as reference for all other 

datasets and hence all datasets have been resampled to the LAI data as described 

in ATBDv2.1 (section 4.2).  

 SWI from Metop/ASCAT (Bauer-Marschallinger et al., 2018) was used at a 

resolution of 0.1° for the period since 2007. The SWI is used as proxy for surface 

fuel moisture. The SWI dataset is already available as a 10 day product, which uses 

the same 10 day interval as the LAI dataset. We use a temporal subset of the SWI 

time series from January 2014 to October 2021 (observation period of the LAI time 

series), which is resampled to the spatial resolution of the LAI data set using 

nearest neighbour interpolation. 

 Burned area was taken from different products and tested. In the PVRv2.1, we 

show results based on the ESA CCI burned area dataset version 5.1 (Lizundia-Loiola 

et al., 2020), which was readily available for all study regions.  

The following datasets were used to calibrate parameters of the S4F model and hence to 

retrieve estimates of fuel load, fuel moisture, fuel consumption and fire emissions at a 

grid-cell basis: 

 Canopy Height: Since the first analysis in PVRv1 revealed that the map of forest 

canopy height from Potapov et al. (2021), in the comparison referred as GLAD, 

saturates at high biomass values in comparison to the above ground biomass map 
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from ESA CCI, we now used the GEDI L3 Gridded Land Surface Metrics product (see 

Section 4.2.4 of ATBDv2.1) for the study regions Amazon and southern Africa, and 

the Global Canopy Top height dataset from ETH (Lang et al., 2022) for Siberia. To 

correspond with the LAI data, the datasets were resampled to the same spatial 

resolution as the LAI data and then matched to the LAI pixel grid using nearest 

neighbour interpolation.  

 The ESA CCI Biomass map was used for the years 2010, 2017 and 2018 (Santoro et 

al., 2021) and linearly interpolated to  the 10-daily values of the S4F model. The 

spatial resolution of 100 m of this dataset was resampled to the resolution of the 

LAI data using nearest-neighbour resampling.  

 FRE was taken from Sentinel-3 and VIIRS observations as described in chapter 3.3 

of ATBDv2.1. 

 LFMC was taken from the VOD2LFMC product (Forkel et al., 2023) to calibrate the 

parameters for the computation of LFMC. 

 Ku-band and X-band Vegetation Optical Depth (Ku-VOD, X-VOD) from the VODCA 

dataset (Moesinger et al., 2020) was used for the calibration of vegetation water 

content (VWC) and VOD. The dataset was interpolated to the spatial and temporal 

resolution of the LAI data. 

 L-VOD from the SMOS-LPRM retrieval dataset was used for the period 2010-2020 

(van der Schalie et al., 2017). The dataset was interpolated to the spatial and 

temporal resolution of the LAI data. 

3.1.3 Calibration and validation against databases of ground observations  

All calibration and validation exercises are based on the S4F model run using the ESA CCI 

land cover map as input if not stated otherwise. The following databases of ground 

observations were used for the calibration and/or validation of the different components 

of the S4F model: 

The Biomass and Allometry Database (BAAD) (Falster et al., 2015) compiles tree-level 

observations of different biomass components such as the total mass of stems and 

branches (variable m.st including hardwood, sapwood and bark), mass of branches 

(variable m.br), mass of leaves (m.lf), total above ground mass (m.so) as well as total plant 

height (h.t). We estimated stem mass as the difference between m.st and m.br. The 

estimated biomass per area (kg m-2) was calculated by dividing the mass (kg) with the 

projected crown area (variable a.cp, m²). The BAAD data was used to calibrate the 

allometry module of the S4F model as described in Section 4.3.3 of ATBDv2. Results of 

this calibration are presented in Section 3.2.2. 

The global live-fuel moisture content database (Globe-LFMC) (Yebra et al., 2019) was used 

to calibrate S4F model parameters for the estimation of live-fuel moisture content. 

Therefore we selected data from 584 combinations of sites and plant species from the 

south-western United States. The south-western US has globally most LFMC 

measurements, which cover a wide environmental gradient from deserts, semi-arid 

regions, temperate forests, and montane forests and tundra. LFMC measurements are 
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not available for Siberia and the Amazon. Results of the calibration are presented in 

Section 3.3.3. 

The Global Database of Litterfall Mass and Litter Pool Carbon (Holland et al., 2014) was 

used to validate estimates of surface fuel loads. Specifically, we extracted measurements 

of leaf litter weight (variable TLEAFW), fine woody debris (variable small wood weight, 

TSWW), total litter weight (Litter + FWD, variable TLTRW), and of large woody weight (CWD, 

variable LWW). As the entries of this database do not match spatially with our test areas, 

we selected data from sites with similar climate conditions (i.e. mean annual temperature 

and precipitation of the measurements sites have to be within the regional minimum and 

maximum of each study region. Results of this validation are presented in Section 3.3.6. 

The field measurement database of biomass burning fuel consumption (originally by van 

Leeuwen et al., 2014; updated by van Wees et al., 2021) was used to validate the estimates 

of fuel loads, combustion completeness, and fuel consumption. The database was 

compiled to parametrise and evaluate fire emission inventories such as GFED (van der 

Werf et al., 2017). For the comparison we selected for each test area/study region data 

from neighbouring measurement sites (i.e. ±2° longitude/latitude around each test area). 

As the spatial coverage of the field measurements might not be representative for the 

spatial resolution of the S4F approach, we compared statistical distributions of fuel 

consumption and combustion completeness rather than performing direct spatial 

comparisons. Results of the validation are presented in Section 3.3.7. 

The database by Andreae (2019) includes statistical distributions of combustion 

efficiencies and emission factors for different trace gases and biomes from various other 

databases and individual investigations. The database was used to calibrate and validate 

the simulated statistical distribution of emissions factors with measured emission factors. 

Results are presented in Section 3.3.8. 

For the calibration and validation of the S4F model a stratified sampling of grid cells was 

conducted for each test area. Therefore each test area was first divided in areas with low, 

medium and high biomass based on the regional quantiles 0.25 and 0.75 of mean above 

ground biomass. Then each biomass class was further separated into pixels with low VOD 

or high VOD based on a threshold below or above the regional average of daily maximum 

Ku-VOD. Maximum Ku-VOD was chosen as the choice of VOD does not affect the sampling 

because of the high correlation with X- and C-VOD. L-VOD was not included in the 

stratification because of the correlation with biomass, which was included in the 

stratification as well. In the last step, only grid cells were selected that burned at least 

once.  
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Figure 4: Overview of the sampled grid cells within study regions/test areas for the calibration and validation 

exercises of the S4F model in PVRv2.1. Red dots are grid cells for which the S4F model was calibrated. Blue and 

purple dots denote approximate locations of field measurements of surface litter from Holland et al. (2014) [blue] 

and of fuel loads and fuel consumption from van Wees et al. (2022) [purple].  

 

3.2 Comparison of canopy height input datasets 

The comparison of the canopy height datasets was carried out on the one hand by 

comparing the basic statistics and on the other hand by calculating the difference maps 

in pairs. The statistics of the three datasets for the Amazon test area reveal that the GLAD 

datasets has lower heights than the other two datasets (Table 3). The mean value is about 

2.5 m lower, the maximum value even 4 m (ETH) and 5.5 m (GEDI) lower. In the ETH and 

GEDI data set, on the other hand, mean and maximum values are more similar. 

 

Table 3: Statistics of the three canopy height datasets for the Amazon test area. Global Forest Canopy Height from 

Potapov et al. (2021) (GLAD), ETH Global Canopy Top Height (ETH) and GEDI L3 Gridded Land Surface Metrics 

(GEDI) 

Statistic GLAD [m] ETH [m] GEDI [m] 

Minimum 0.00 0.00 1.10 

Median 6.73 11.49 10.10 

Mean 9.76 12.42 12.20 

Maximum 30.18 34.36 35.90 

 

The same tendency is reflected in the difference maps for the Amazon test area, especially 

in the corresponding histograms (Figure 5). The difference map between GLAD and GEDI 

shows that GEDI provides greater heights in areas with low tree cover (Figure 5 c, reddish 

colours), whereas GLAD has greater heights in areas with dense tree cover (Figure 5 c, 

blue colours). 
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Figure 5: Pairwise comparison of canopy height datasets for the Amazon test area (top) difference maps, (below) 

corresponding histograms of differences. 

 

The fact that GEDI and ETH datasets are very similar, but the ETH dataset is at a higher 

spatial resolution and has fewer data gaps, would lead to the conclusion that it is the most 

suitable for calibrating tree heights. To confirm this assumption, the same comparison of 

the datasets was carried out for the southern Africa test area. 

For the southern Africa test area, however, the pattern is different. Here, the GEDI dataset 

shows the highest mean value more than 4 m above the mean value of the GLAD data set 

and approximately 3 m above the mean value of the ETH dataset (Table 4). 

 

Table 4: Statistics of the three canopy height datasets for the southern Africa test area. Global Forest Canopy 

Height from Potapov et al. (2021) (GLAD), ETH Global Canopy Top Height (ETH) and GEDI L3 Gridded Land Surface 

Metrics (GEDI) 

Statistic GLAD [m] ETH [m] GEDI [m] 

Minimum 0.00 0.00 1.33 

Median 8.27 9.41 12.59 

Mean 7.69 9.30 12.08 

Maximum 24.22 33.02 27.49 
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Figure 6: Pairwise comparison of canopy height datasets for the southern Africa test area. (top) difference maps, 

(below) corresponding histograms of differences 

 

The difference maps between the ETH dataset and the other two datasets show tile-like 

patterns with abrupt height differences, which could originate from the combination of 

the GEDI heights with the Sentinel data (Figure 6 a and b). Due to these artefacts, the ETH 

dataset does not necessarily seem to be the best choice. Since the GLAD dataset is a 

combination of GEDI/Landsat and similar artefacts cannot be excluded, it was decided to 

initially use the GEDI L3 Gridded Land Surface Metrics product for the calibration, which 

is based exclusively on GEDI data. 

The comparison of canopy height datasets was not performed for the Siberia test area, 

as for this region only the ETH dataset is available.  

3.3 Calibration and validation of the S4F model 

3.3.1 Training regression models for prior estimates for canopy height 

The computation of canopy height in the S4F model is based on a regression between the 

predictor variables mean LAI (LAImean) and fractional tree cover (ftree) and the target variable 

canopy height H (Section 4.3.2 of ATBDv2.1). The target variable for canopy height is taken 

from the GEDI L3 Gridded Land Surface Metrics product. Several regression models were 

tested to predict canopy height (Table 5). Linear regression models were tested with one 

predictor based on either mean LAI (M1 and M2). We then combined LAImean and ftree in 

further regression models that account for non-linear relationships: Model 4 is a 

Generalised Additive Model (GAM), Model 5 is multi-variate linear regression with LAImean 

included as quadratic term, and Model 6 is a random forest. Model M7 combines the 

LAImean included as quadratic term with ftree as a product. Model M5 achieved the best 
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performance in the Amazon study region, the GAM (M4) in southern Africa, and the GAM 

and RF in Siberia (Table 5). However, as the performance between the GAM and model 

M5 were similar in the Amazon and Southern Africa study region but M5 had a much 

faster computation time, we selected M5 for those two study regions. For Siberia, we 

selected model M8, despite having a lower correlation and higher RMSE than some of the 

other models. This is because all other models could not predict canopy heights > 12 m 

in Siberia while the GEDI L3 datasets suggests canopy height of up to 20 m. Model M8 was 

the only model that could predict such canopy height values. 

Table 5: Performance statistics of ten regression models to estimate canopy height from mean or maximum LAI 

and fractional tree cover. Correlation (r) and root mean squared error (RMSE) between canopy height from the 

GEDI L3 Gridded Land Surface Metrics product and the regression model.  

 Amazon study region Southern Africa study 

region 

Siberia test area 

Model r RMSE (m) r RMSE (m) r RMSE (m) 

M1) 𝐻 = 𝑎 × √𝐿𝐴𝐼𝑚𝑒𝑎𝑛 0.75 5.76 0.66 3.12 0.63 3.52 

M2) 𝐻 = 𝑎 × 𝐿𝐴𝐼𝑚𝑒𝑎𝑛 + 𝑏 0.79 5.07 0.68 3.05 0.64 3.20 

M4) [𝐺𝐴𝑀] 𝐻 = 𝑠(𝐿𝐴𝐼𝑚𝑒𝑎𝑛) + 𝑠(𝑓𝑡𝑟𝑒𝑒) 0.8 4.94 0.73 2.85 0.66 3.12 

M5) 𝐻 = ℎ1 × 𝐿𝐴𝐼𝑚𝑒𝑎𝑛
2 + ℎ2 × 𝑓𝑡𝑟𝑒𝑒 + ℎ3 0.81 4.90 0.71 2.92 0.62 3.24 

M6) [𝑅𝐹] 𝐻 = 𝑅𝐹(𝐿𝐴𝐼𝑚𝑒𝑎𝑛, 𝑓𝑡𝑟𝑒𝑒) 0.79 5.06 0.72 2.86 0.66 3.13 

M8) 𝐻 = 𝑎 × 𝐿𝐴𝐼2
𝑚𝑒𝑎𝑛 ∙ 𝑓𝑡𝑟𝑒𝑒 0.79 8.05 0.66 7.50 0.62 3.82 

Model 5 was then applied to the entire Amazon and Southern Africa study regions, and 

Model 8 to the Siberia test area and compared with the full spatial distribution of the GEDI 

L3 Gridded Land Surface Metrics product (Figure 7). The S4F model shows a strong 

agreement with the GEDI L3 canopy height product but a slightly under- or overestimated 

in certain parts of the test area. The error between the estimated canopy height and 

canopy height dataset is on average 0.1 m (Figure 7). 

 

Figure 7: Comparison of residuals between estimated canopy height from the S4F model and from the GEDI L3 

Gridded Land Surface Metrics product.  
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3.3.2 Calibration against BAAD for biomass components  

The estimated tree canopy height is used in the S4F model to estimate the biomass of 

tree stems, branches and leaves based on allometric relationships (Section 4.3.3 of 

ATBDv2.1). The parameters a1 to a6 of these allometric relationships are calibrated 

against the BAAD measurements. Thereby, measurements in BAAD from tropical broad-

leaved evergreen and deciduous trees were taken for the Amazon and Southern Africa 

study regions with using prior parameter values for tropical broad-leaved evergreen trees 

in the Amazon and for tropical broad-leaved deciduous trees in Southern Africa. For 

Siberia, measurements for temperate and boreal needle-leaved evergreen and deciduous 

trees were used. To calibrate the parameters of the allometric relationships, we use the 

measured total tree height from BAAD as input to the allometry module of the S4F model. 

Thereby, we assume that the phenology status of the leaves is 1, i.e. all measured trees in 

BAAD are at full seasonal leaf cover. The calibration approaches uses a cost function 

based on the Kling-Gupta efficiency and a genetic optimisation algorithm as described in 

Section 4.3.11 of ATBDv2.1. We then compute the total above-ground biomass, the 

biomass of wood, stem, branches and leaves. The cost function is then computed jointly 

against the corresponding measurements from BAAD. 

 

Figure 8: Comparison of the cost of the S4F model for the Amazon study region prior and after calibration against 

the BAAD database of total above-ground biomass (BMagb), woody, stem and branches biomass (BMwood = 

BMstem + BMbranches), and leaf biomass (BMleaf). 

 

The change of the cost function between the prior and the optimised parameter set is 

shown for the Amazon study region in Figure 8. Prior to calibration, the cost was 

dominated by the error in leaf biomass. After calibration, the cost was reduced for all 

biomass components but stem biomass (although for total woody biomass it was strongly 

reduced). Similar changes in the cost occurred in the other study regions.  

The corresponding scatterplots of the calibration results are shown for leaf and woody 

biomass for all study regions in Figure 9. The allometry model provides an acceptable fit 

to all biomass components with medium to high correlations and low to medium RMSE. 
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The lowest performance is thereby achieved in the estimation of leaf biomass, which also 

shows a strong scatter in the observations and weak relationships with stem or woody 

biomass or tree height. Please note that most measurements in the BAAD database 

originate from measurements of rather small trees with low biomass, hence the 

allometric relationships are poorly constrained for high-biomass trees.  

 

Figure 9: Scatterplots of estimated biomass compartments (kg m-2) from the S4F model (y-axis) against 

measurements of the BAAD database (x-axis) after optimisation for leaf biomass (upper row) and woody biomass 

(lower row). 

 

3.3.3 Calibration for prior estimates of regional above-ground woody biomass 

We then applied the pre-calibrated height and allometry modules to calibrate the S4F 

jointly against BAAD (for leaf, stem and branches biomass) and against the ESA CCI 

biomass map (for total woody biomass) for the selected grid cells in each study region. 

The S4F model reproduces the overall spatial patterns of woody biomass (Table 6). 

However, locally large residuals can occur (Figure 10), which often occurs along edges of 

forests or rivers likely caused by inconsistencies between the land cover, biomass and LAI 

datasets in such transitional areas. 

Table 6: Performance statistics of the prior S4F model to estimate above-ground woody biomass in comparison to 

the ESA CCI biomass map for the year 2018.  

 Amazon study region Southern Africa study 

region 

Siberia test area 

Model r RMSE 

(kg/m²) 

r RMSE 

(kg/m²) 

r RMSE 

(kg/m²) 
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S4F before calibration against 

BAAD+ESACCI 

0.82 9.20 0.8 3.44 0.55 4.98 

S4F after calibration against 

BAAD+ESACCI 

0.85 7.11 0.8 3.32 0.55 2.60 

 

 

Figure 10: Comparison of residuals between estimated above ground woody biomass from the S4F model and 

from the ESA CCI biomass dataset (year 2018). 

 

3.3.4 Prior estimates for live-fuel moisture content  

The module to estimate live-fuel moisture content (LFMC) in the S4F model was calibrated 

against ground measurements of LFMC from 584 combinations of sites and plant species 

from the Globe-LFMC database. For all site-species combinations, the S4F achieved in 

most cases medium to high temporal correlations between observed and estimated LFMC 

(Figure 11). The highest correlations were found for shrublands (median r = 0.75) and the 

lowest correlations for broad- and needle-leaved forests (median r = 0.5). Root-mean 

squared error was for all vegetation in average between 20 and 30 %-LFMC. 

 

Figure 11: Performance of the S4F model in reproducing LFMC from site observations of forbs, grass, shrubs, 

broad-leaved and needle-leaved trees in the south-western United States. 
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3.3.5 Fire event-based retrieval of fuel and fire dynamics 

After the initial calibrations of the S4F model modules for canopy height, tree biomass, 

and LFMC, the S4F model was then calibrated for individual fire events jointly against the 

datasets of GEDI canopy height (2020), ESA CCI above-ground biomass (2010, 2017, 2018 

interpolated), LFMC from the VOD2LFMC dataset, VOD in Ku-, X and L-band, and FRE. This 

calibration allows finding a best solution for each local fire event that is constrained by 

the different datasets and hence allows to retrieve estimates of pre-fire biomass 

compartments, surface fuel loads, fuel moisture, vegetation water content, and finally fuel 

consumption and fire emissions. In the following we illustrate the approach based on one 

example and then describe the calibration performance across several fire events. 

As an example, the estimated temporal dynamics of biomass, fuel moisture, fuel loads, 

fuel consumption, FRP and fire emissions are shown for the fire event in 2020 at 

53.96726°W, 10.654762°S in the Amazon test area (Figure 12). Based on the input data, 

this example grid cell is dominated by a high tree cover (85%), medium-high canopy height 

(18.5 m) and biomass (24 kg/m²). The site shows a strong reduction in LAI in 2020, which 

is caused by the observed fire with a fire radiative energy of around 45 MJ/m² (Figure 12 

a-d).  

The calibration of the S4F model for this grid cell results in an unbiased canopy height 

(Figure 12 b), a slightly under-estimation of total woody biomass (Bias = 7%, RMSE = 1.9 

kg/m², Figure 12 c), an unbiased and highly correlated LFMC (r = 0.7, Figure 12 e), and an 

appropriate representation of the VOD across the different bands (e.g. r = 0.5 with Ku-

VOD, Bias = -15%, -3% and -55% for Ku-, X- and L-VOD, Figure 12 f-h). The initial 

overestimation of FRE (prior FRE = 120 MJ/m²) was clearly reduced (optimised FRE = 80 

MJ/m²).  

From this calibration, we retrieve a strong reduction of woody biomass and of coarse 

woody debris (CWD) during 2020 (Figure 12 i and j). Fuel consumption is dominated by 

the burning of CWD (Figure 12 k), which causes emissions of around 4000 g/m² of CO2 and 

around 300 g/m² of CO.  
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Figure 12: Example of the estimated fuel and fire dynamics from the S4F model for one example grid cell in the 

Amazon test area (53.96726°W, 10.654762°S).  

 

The calibration of the S4F model was conducted for several individual fire events in all 

study regions (Figure 4). In the Amazon, the calibration was performed for 691 single fire 

events because of the complexity of the different fire types. In souther Africa, the 

calibration was performed for only 50 fire events because of the large similarity in 

biomass stocks and land cover. In Siberia, the calibration was performed for 124 fire 

events.  

The evaluation for tree height and woody biomass after calibration across the fire events 

is shown in Figure 13. For most events, the S4F estimates agree well with the GEDI canopy 

height and with the ESA CCI woody biomass. Although the calibration results show no bias 

in tree canopy height, there is a tendency to underestimate the woody biomass at sites 

with large biomass. In all study regions, grid cells occur where the S4F model predicts no 

canopy height or woody biomass although the two datasets show medium to high values. 

This suggests inconsistencies between the ESA CCI land cover data sets (input to the S4F 

model) and canopy height and/or woody biomass, which often occurs in transitional 

areas. 
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Figure 13: Performance of the S4F model across 353 fire events in the Amazon test area based on event-level 

calibration against GEDI tree canopy height, ESA CCI woody biomass, VOD2LFMC, Ku-, X- and L-VOD and FRE. (a) 

Relationship between tree canopy height in 2019 from GEDI and estimated from the S4F model. (b) Relationship 

between mean above-ground woody biomass in 2017 and 2018 from ESA CCI and the S4F model.  

 

The calibration resulted in the majority of fire events in medium to high positive 

correlations of the S4F-retrieved LFMC with the VOD2LFMC dataset (with slightly lower 

correlations in the Amazon) and with VOD from the VODCA dataset (Ku- and X-band) and 

from SMOS (LPRM L-band) (Figure 14).  

 

Figure 14: Temporal correlation between estimated LFMC and VOD from the S4F model and the corresponding 

estimates from the VOD2LFMC, VODCA (Ku-/X-/C-VOD) and SMOS-LPRMS (L-VOD) datasets based on a calibration of 

the S4F model against individual fire events in each study region. 

 

The estimated fire radiative energy is unbiased in comparison to the Sentinel-3/VIIRS-

derived FRE (Figure 15). FRE is overestimated for some fire events in the Amazon and in 

Siberia (Figure 15 a and c) but underestimated for some fire events in Southern Africa 

(Figure 15 b).  
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Figure 15: Comparison of estimated and observed FRE. 

 

3.3.6 Validation of fuel loads 

The S4F model computes surface fuel loads (litter, FWD and CWD) based on the turnover 

of biomass from living vegetation components to the surface which is driven by long-term 

changes prescribed from the LAI and land cover datasets (Section 4.3.5. of ATBDv2.1) and 

by taking typical decomposition rates for litter and woody debris (Harmon et al., 2020). 

We validated the estimated fuel loads against measurements from the global database of 

litter fall mass and litter pool sizes (Holland et al., 2014) and against the updated fuel 

database (van Wees et al., 2022) (Figure 16). Especially in the Amazon region, estimated 

fuel loads agree well with the statistical distribution from the databases. In southern 

Africa, the S4F model tends to overestimate fuel loads (Figure 16 b). However, this needs 

further investigation as most of the field observations come from the more drier southern 

part of the study region while the S4F model was mostly calibrated for the wetter central 

and northern parts (Figure 4). Total fuel loads and litter agree are comparable with the 

databases in Siberia but CWD is overestimated (Figure 16 c). 
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Figure 16: Validation of the estimated fuel loads from the S4F model against measurements from the global 

database of litter fall masses and from the fuel consumption database. Numbers above each box indicate the 

number of observations from the fuel database and of the sampled locations of S4F fuel model, respectively. Note 

that locations in measurements in S4F grid cells do not match but only represent regional distributions.  

 

For the Amazon study region, we further investigated how the used land cover datasets 

(i.e. default ESA CCI land cover or as alternative Song et al. (2018)) as input to the S4F 

model affect the estimated fuel loads (Figure 17). As above-ground biomass is constrained 

by the ESA CCI biomass map, both datasets result in a similar total fuel load, which is 

dominated by woody biomass. However, the Song dataset causes lower herbaceous 

biomass, FWD and litter but much larger CWD than the ESA CCI dataset. This is likely 

because of the stronger temporal dynamic in the Song dataset, which causes a more 

frequent turnover of woody biomass to CWD in the S4F model. However, the estimated 

fuel loads derived from the ESA CCI land cover map agree better with statistical 

distributions of fuel loads for different fuel types than derived from the Song dataset.   
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Figure 17: Distribution of fuel loads for the Amazon study region for the same measurement locations from the 

global database of litter fall masses (H14) and from the fuel consumption database (W22) and grid cells from the 

S4F model using the ESA CCI land cover map (S4F.CCI) and the land cover map by Song et al. (S4F.S) as input.  

 

3.3.7 Validation of fuel consumption 

The estimated combustion completeness and fuel consumption from the S4F model 

(using ESA CCI land cover as input) were then compared against measurements from the 

updated  fuel consumption database (van Leeuwen et al., 2014; van Wees et al., 2022). In 

the Amazon and Siberia study regions, total fuel consumption agree well with the 

database (Figure 18). In both regions, the total fuel consumption mostly originates from 

the burning of wood while the S4F model attributes the fuel consumption more to CWD 

than to live wood (Figure 18, second and third row). In southern Africa, total fuel 

consumption seems to be over-estimated, which however might be related to higher fuel 

loads in the wetter parts of the study region than represented by the field measurements 

from the drier regions.  
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Figure 18: Validation of fuel consumption from the S4F model against the updated fuel database by van Wees et al. 

(2022). Numbers above each box indicate the number of observations from the fuel database and of sampled 

locations of S4F fuel model, respectively.  

 

3.3.8 Combustion efficiency and emission factors 

After the calibration of the S4F model for individual fire events in each test area, the 

regional statistical distribution of the estimated Modified Combustion Efficiency (MCE) 

and of the estimated emission factors and of the spatial distribution of FRE was then 

calibrated and compared against the statistical distribution obtained from the 

compilation of emission factors by Andreae (2019). The Equivalent Oxygen to Fuel Ratio 

(EOFR) for all fuel types and the fraction of cellulose of leaves, herbaceous vegetation and 

wood, and the fraction of volatiles of leaves and herbaceous vegetation was calibrated by 

jointly fitting the estimated quantiles against the observed quantiles of MCE and emission 

factors.  

The distribution of MCE and of emission factors for CO2, CO and NOx are shown in Figure 

19. The S4F model reproduces the observed statistical distributions of emission factors. 

Only in Siberia, the S4F model produces a lower median MCE, resulting in a higher median 
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emission factor for CO. Prior to the optimization, the emission factor for NOx was 

overestimated in all study regions but was reproduced after optimization.   

 

 
Figure 19: Validation of the modified combustion efficiency (MCE) and of the emission factors of CO2, CO and NOx 

from S4F model before and after optimisation against observed emission factor values [A19] (Andreae, 2019). For 

the Amazon test area, all values from tropical forests and from savannah and grasslands were taken from A19. For 

the southern Africa study region the values for savannahs and grasslands were taken from A19. For Siberia, values 

for grasslands and boreal forests were taken.  

 

3.3.9 Example results from the S4F data-model fusion approach 

As final outputs of the S4F model, temporal dynamics and spatial patterns of total fuel 

consumption and of fire emissions are shown for one example area in the Amazon test 

area in Figure 20 and for the entire Amazon study region in Figure 21. The example area 

in Figure 20 experienced large fires in 2016 and 2020. High fuel consumption in this area 

occurs mainly because of fires in forest stands that mainly burn woody debris and show 

a smouldering combustion (e.g. fire at 51.85°W, 12.1°S in Figure 20 a, b and e). Fires in 
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grasslands show a higher consumption of litter with more flaming combustion (e.g. fires 

east of 51.7°W in Figure 20 c and d). 

 

Figure 20: Example of fuel consumption and fire emissions derived with the S4F data-model fusion approach in a 

part of the Amazon test area at a spatial resolution of 333 x 333 m for a period between 11th and 20th October 

2016. (a) Leaf area index (CGLS Proba-V) and detected fires (ESA CCI v5.1). Blue and red colours identify 

smouldering and flaming combustion (based on MCE), respectively. Circle size represent the fire radiative energy. 

(b) Tree biomass (wood + leaves) and tree biomass fuel consumption. (c) Herbaceous biomass and herbaceous fuel 

consumption. (e) Sum of fine and coarse woody debris and fuel consumption of woody debris. (f) Litter and litter 

fuel consumption. (d) The time series show the 10-daily emissions of PM2.5, NOx, CO2, CO and the fuel 

consumption aggregated for different fuel types. Numbers in (d) are totals of fuel consumption and emissions for 

the period between 11th and 20th October 2016. A full multi-temporal animation of this figure can be found at 

https://vimeo.com/820320850  

 

The continental maps in Figure 21 show high loads of woody biomass in the Amazon 

forest and higher loads of litter in some savannah regions outside of the tropical forests 

(Figure 21 a and b). The highest fuel consumption in the study region occurred between 

10th and 20th September 2020 with up to 1.2 kg/m² fuel consumption in some regions 

(Figure 21 c). There is a clear contrast in combustion behaviour between fires along the 

rivers in the Amazon basin with lower combustion efficiencies (e.g. more smouldering 

combustion) and higher combustion efficiency in grasslands and savannahs (Figure 21 d). 

This results in higher emission factors for e.g. CO in tropical forests than in Savannahs 

(Figure 21 e). Nevertheless, total CO emissions are mainly dominated by the spatial 

distribution of total fuel consumption (Figure 21 f).  

https://vimeo.com/820320850
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Figure 21: Continental results from the S4F data-model fusion approach for the Amazon study region for the 

period 10th-20th September 2020.  In white areas in (a-c, f) fires never occurred and where hence not computed. In 

white areas in (e) and (d) fires did not occur in the period in September 2020. Results were aggregated and then 

resampled from the original spatial resolution (333 x 333 m) to a resolution of 0.1° x 0.1°. 

 

Finally, we compared the estimated CO emissions for the Amazon study region in 2020 

with emissions estimates from GFED using the near-real time estimates from the Amazon 

dashboard (available at http://www.globalfiredata.org/analysis.html) (Figure 22). While 

the default S4F model setup with the ESA CCI land cover as input shows lower CO 

emissions than the GFED VIIRS-NRT dataset, S4F with using the Song et al. land cover 

dataset shows comparable fire CO emissions. The much lower CO emissions for the 

S4F.CCI results are surprising because the derived fuel loads, fuel consumption, and 

emission factors in this experiment agree well with observations (Figure 16, Figure 17, 

Figure 18, Figure 19). We hypothesize that the underestimation of CO emission hence 

results from an underestimation of small burned areas in the used ESA Fire_CCI5.1 

burned area dataset. On the other hand, the better agreement of the S4F.S model 

experiment using the Song et al. land cover dataset likely originates from the 

overestimation in CWD and hence an overestimation of fuel consumption of CWD. The 

use of an alternative burned area datasets than ESA Fire_CCI5.1 together with the land 

cover dataset by Song et al. might hence result in much higher CO emissions. These 

results suggest to conduct a more detailed analysis and validation of the S4F data-model 

fusion approach by using different input datasets of burned area and land cover.  

http://www.globalfiredata.org/analysis.html
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Figure 22: Time series of CO emissions for the year 2020 in the Amazon study region from the GFED VIIRS NRT product 

from globalfiredata.org and derived with the S4F model with using the ESA CCI land cover as input (S4F.CCI) and the 

land cover dataset by Song (S4F.S).  

 

4 Top-down constraints on fire emissions 

4.1 Theoretical baseline 

Current state-of-the-art satellite observation-based fire emission databases such as GFAS 

and GFED combine information of burned area and  active fire detections with associated 

radiative power to derive trace gas emissions that are further used for estimating fire total 

carbon emissions. However, total carbon emission using existing methods are highly 

uncertain. Fire emissions – and in particular ratios of emissions between various trace 

gases - also depend on for example the type of vegetation and the hydrological conditions 

of the vegetation. Such information has now become available from the Sentinel 1-2-3 

satellite missions but that information is not yet used to upgrade and improve state-of-

the-art fire total carbon emission estimates. The Sense4Fire project aims to bridge this 

gap. 

Satellite-based assessment and evaluation of fire emissions to date have mostly relied on 

satellite measurements of CO and HCHO. Model simulations of atmospheric chemistry 

and the atmospheric composition are used to bridge the gap between emissions and 

satellite observations by using the fire emissions as boundary conditions for simulating 

the atmospheric chemical composition. Although useful to estimate the continental and 

global effects of fire emissions, the satellite measurements of CO and HCHO that have 

been used so far, e.g. based on MOPITT and OMI instruments, are less suitable for 

detailed regional to local evaluation of emissions due to the need to average satellite data 

in time and/or space, and the relatively coarse spatial resolution of satellite 

measurements. 
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The Sentinel-5p satellite mission (TROPOMI) provides joint measurements of fire-relevant 

trace-gases CO, HCHO, NO2, as well as aerosol properties, with unprecedented accuracy 

and spatial resolution. This opens hitherto unavailable possibilities to assess fire emission 

estimates. The accuracy and spatial resolution Sentinel-5p trace gas measurements allow 

for zooming in on much smaller regions, and spatiotemporal averaging is for CO and NO2 

not needed, i.e. Sentinel-5p is capable of monitoring individual fire emission plumes on a 

daily basis. Furthermore, the accuracy also allows for advanced use of trace gas ratios, 

which provides additional information about the fire process as especially NO2 and CO 

emission dependencies differ significantly. The combined focus on NO2, CO (HCHO) and 

aerosol parameters (AAI, ALH) thereby allows for better constraining total fire carbon 

emissions. The emissions of NO2 and CO (HCHO) depend on different fire characteristics. 

NO2 is typically emitted at higher burning temperatures (Zeldovich mechanism), whereas 

CO (HCHO) emissions are the result of incomplete combustion. Both depend on fuel type 

and fuel characteristics such as mass and (soil) moisture, but in a different way. The more 

incomplete the combustion, the more carbon that remains unburned and less NO2 

emission is to be expected. Sentinel-5p trace gas ratios thus can provide information 

about the burning efficiency and thereby constraining burned and emitted carbon. 

Aerosol information allows for estimating emission mass determination of plume extents 

and volumes but also to characterise fire types: more incomplete combustion will result 

in a larger amount of unburned (scarred) fire material and higher AAI values. 

Feeding the Sentinel 1-2-3 based high resolution emission estimates as boundary 

conditions into the IFS/CAMS model simulations then allows for a detailed comparison 

with Sentinel-5p data to make optimal use of the information richness of Sentinel-5p data. 

Sentinels -2 and -3 observe surface characteristics at much higher spatial resolution than 

Sentinel 5p (~300 metre for Sentinel-3; ~10-20 metre for Sentinel-2 depending on 

wavelength). The Sentinel 1-2-3 observations are then used to quantify fire behaviour, 

burned area and fuel information and combined to identify fire types and estimated fire 

emissions (see Sense4Fire ATBD for details). Feeding all the information of the 

comparison back into the algorithms and data used by the algorithms has the potential 

to validate and improve emission estimates of these parameters and thereby – via the 

dependence of emissions on fire characteristics as described above – also improve 

associated emissions of total carbon. 

4.2 Input data 

For constraining the emissions top down using Sentinel-5p data the analyses are 

performed for four regions and time periods defined in Chapter 2 in the ATBDv2. 

The Sentinel-5p data being used is tropospheric NO2, CO total columns, HCHO total 

columns, the AAI, and the ALH. The accuracy of tropospheric NO2 and CO is sufficient to 

be used in a daily basis at the Sentinel-5p spatial resolution. 

The short atmospheric lifetime of NO2 (hours) ensures that local enhancements of NO2 

near fires can almost uniquely be attributed to those fires unless there are non-fire NO2 
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sources in the immediate vicinity of the fires. The regions were chosen such that there are 

few other sources like cities or industrial activities. Due to its decreasing vertical sensitivity 

with altitude, the Sentinel-5p NO2 averaging kernel needs to be applied for the 

comparison with model simulations. Also, for sufficiently thick aerosol clouds the Sentinel-

5p NO2 quality flag values are lower, indicating that the tropospheric NO2 date product 

actually may not have sensed the entire tropospheric column. Depending on the chosen 

data quality threshold such measurements then may be discarded, even though they still 

can provide valuable information of the emitted NO2. Although it is beyond the scope of 

the Sense4Fire project to explore individual fire plume behaviour, it is explored to some 

extent whether there is added value in considering such lower quality tropospheric NO2 

measurements. 

CO has a much longer atmospheric lifetime (weeks to months) than NO2, resulting in 

seasonal changes in background CO levels due to accumulation of widespread emissions 

and/or advection. These seasonal changes are considered and accounted for in analyses, 

especially when averaging over longer periods of time as background CO levels vary 

seasonally. An advantage of Sentinel-5p CO is that its vertical sensitivity is nearly uniform 

so that to first order the effect of the averaging kernel is limited (even though it is applied).  

HCHO has a lifetime more similar to that of NO2 but due to the lower accuracy of Sentinel-

5p HCHO measurements time averaging for HCHO time averaging is required, which 

limits the possibility to explore HCHO variations on a daily to multi-day basis. Similar to 

NO2, the HCHO averaging kernel must be considered for the model comparison. 

The AAI – being a qualitative indicator of absorbing aerosols - is used strictly qualitatively 

for identifying the extent of emission plumes and/or air masses being affected by fire 

emissions. 

The ALH can be used for estimating the height of aerosols. However, the ALH measures a 

centroid aerosol layer height, not the top of the aerosol layer height. Also, the ALH is more 

accurate for optically thinner aerosol plumes. This, however, strongly reduces the number 

of useful ALH observations. For optically thick aerosol plumes the ALH quality flag values 

are lower, and depending on the chosen quality flag thresholds, may be disregarded. 

However, for optically thick aerosol plumes the atmospheric oxygen-based cloud top 

height can be used as a cloud top height proxy [see (de Laat et al., 2020)]. Because of the 

reduced capacity to assess aerosol layer heights by standard use of the ALH, the use of 

cloud top heights for optically thick aerosol plumes as proxy for the ALH is explored. For 

identifying optically thick aerosol plumes the AAI is used. There is some ambiguity of the 

Sentinel-5p AAI values to identify optically thick aerosol clouds. For a strict filtering AAI 

values > 4 are used, but it has been suggested that AAI values > 2 can also be used as long 

as no bright clouds are present below the aerosol plume (de Laat et al., 2020). In case of 

the regions and fires considered in Sense4Fire, emission plumes are expected mostly in 

the boundary layer and/or the lowermost atmosphere (e.g. (Val Martin et al., 2010); (Veira 

et al., 2015); (Rémy et al., 2017)). Hence it is generally not expected that many scenes with 
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clouds below the aerosol plumes occur, but it is something to keep in mind when 

performing the Sense4Fire analyses.  

The IFS/CAMS global atmospheric composition modelling system is used to simulate the 

atmospheric conditions during the periods and for the regions under consideration (see 

Section 4.1). The model results serve to bridge the gap between bottom-up emission 

estimates (based on fire types/section 2.2 or based on the S4F model/section 3.3, GFAS, 

GFED) and Sentinel-5p observations. GFAS and GFED are the state-of-the-art and widely 

used and referred to satellite-observation-based fire emission databases (GFAS in near-

real-time and GFED as a post-processing data product). As the aim of Sense4Fire is to 

improve satellite-observation-based fire emission estimates, results should be shown to 

improve on the current fire emission standards. The model results can be compared with 

Sentinel-5p observations after applying satellite observation operators.  

The IFS/CAMS model is using target CY48R1 tropospheric chemistry and aerosol modules. 

It is driven by ECMWF operational meteorology, and using emissions (including 

anthropogenic and biogenic) as prepared for the operational model configuration. It is 

setup to run at an approximately 40 km spatial resolution (T511 reduced Gaussian grid), 

with 137 vertical model levels (approximately 60 layers in the lowest 10 km of the 

atmosphere). This implies that the horizontal model resolution (0.25 degrees at best, 

which is approximately 25 km) is much less refined than the Sentinel 1-2-3 data (sub-km 

scale), emission estimates (km scale) and the Sentinel-5p spatial resolution (3.5x5.5 km at 

best). This may have a considerable effect on the model-observation comparison, 

especially as localised sub-model scale non-linear emission plume chemistry may result 

in changes in atmospheric composition that differ from direct injection of fire emissions 

at the native model resolution, particularly for short-lived trace gases. This is a well-known 

phenomenon from for example transport (aviation, shipping, road traffic) but also 

stationary sources such as power plants. Such impacts traditionally have been mitigated 

in modelling by applying resolution-dependent correction factors to emission values. To 

what extent such sub-model-grid processes also play a role for fire emissions is not well 

established but will be considered within the context of Sense4Fire study and results. 

To compare Sentinel-5p observations with IFS/CAMS output we take into account all 

relevant aspects that are required when matching observation data to model data. Only 

observations with quality assurance threshold above 0.75 are used, as recommended by 

the NO2 product user manual. This concerns observations with cloud radiance fraction of 

less than 0.5, and excludes retrievals with ground pixels covered with snow/ice, as well as 

problematic retrievals.  

The model fields are interpolated in time to match with local overpass time of TROPOMI. 

The collocated model-observation pairs are gridded on a common 0.5x0.5 degree output 

field (or different resolution, which is configuration setting), and only written to NetCDF if 

a threshold coverage of 50% of the grid cell is reached. 
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The averaging is done by an area-weighted approach, hence taking into account the area 

of the TROPOMI-pixel that is within the model grid box (Douros et al., 2022). 

4.3 Methods 

To enable constraining fire emission using a top-down approach the following topics need 

to be addressed to validate this method: 

1. analysis of sensitivity to model parameters and model input affecting assessment 

of fire emissions 

2. comparison of model simulations with Sentinel-5p data to derive conclusions on 

input fire emissions 

3. optimising the bottom-up emission estimates based on results above 

These topics are evaluated based on the following set of Sentinel-5p parameters relevant 

for fire emission monitoring: 

i. Nitrogen Dioxide (NO2) tropospheric column 

ii. Carbon Monoxide (CO) total column 

iii. Formaldehyde (HCHO) total column 

iv. Absorbing Aerosol Index (AAI) 

v. Aerosol Layer height (ALH) 

Note that Sentinel-5p is only capable of measuring the total column amounts of CO, HCHO 

and tropospheric NO2. However, the accuracy and precision of Sentinel-5p measurements 

of CO tropospheric NO2 is sufficient to allow measuring daily single satellite pixel 

atmospheric enhancements of both due to fires and near fires. Furthermore, free 

tropospheric abundances are small most of the time (tropospheric NO2 and HCHO) 

and/or free tropospheric abundances vary more slowly (CO) which allows for monitoring 

single fire emission plumes. For longer lived CO slowly varying background CO levels need 

to be kept in mind. These include seasonal cycles due to larger scale to regional to 

continental accumulation of CO in the free troposphere in case of widespread persistent 

fires such as over the Amazon and equatorial Africa. However, such slow varying 

background CO levels and especially spatial gradients are well represented in the IFS 

model. For HCHO the lower Sentinel-5p single pixel accuracy and precision means some 

averaging is needed, making it less useful for fire monitoring. 

Furthermore, the following observed and modelled trace gas enhancement ratios in fire-

emission affected regions are explored. Note that these ratios are compared with IFS 

modelled ratios in which the averaging kernels are taken into account, rather than 

studying the ratios themselves. By comparing with IFS model results differences in vertical 

sensitivity is initially irrelevant. However, if needed, the availability of IFS model results 

allow to explore the sensitivity of analysis results to differences in Sentinel-5p vertical 

sensitivity for different parameters: 

vi. NO2/CO 

vii. HCHO/CO 
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viii. HCHO/NO2 

Model experiments varying the following model parameters and input data are 

performed and analysed to identify, characterise, and rank their impact on the model 

results. 

A. model resolution (0.25, 0.5, 1 degree) 

B. emissions amounts (GFAS, GFED; variations in emission factors) 

C. emission heights 

D. diurnal cycle of emissions 

E. model chemistry 

F. observation filtering selection criteria 

The baseline simulation is then compared with Sentinel-5p observations for the Sentinel-

5p parameters listed above, taking observation operators into account. This provides 

understanding on the use of Sentinel-5p satellite observations in the interpretation of 

emission biases, and in particular understanding on the interpretation of the optimal way 

to optimise Sentinel 1-2-3 based emissions. 

The diurnal cycle of emissions is based on fire radiative power climatologies. 

4.4 Validation approach 

Validation of the Sense4Fire emission estimates can subsequently take place using the 

IFS/CAMS modelling system. Specifically, the IFS/CAMS reference configuration is run with 

different variants of the emission estimates based on fire type classifications (denoted 

S4F-Cardiff) or based on the results from S4F model approach (denoted S4F-Dresden) and 

analysed to identify the best-performing configuration with respect to Sentinel-5p data, 

taking observation operators into account. The comparison results will then be further 

analysed by evaluation of differences with Sentinel 1-2-3 based emission parameters such 

as burned area, fuel type, fuel moisture content, and soil moisture content. 

Disagreement is further explored by tracing the disagreement back to specific fires and/or 

fire locations. The specific emission characteristics of fire emissions at the identified 

location is evaluated, including the results from the sensitivity analyses performed before: 

given the results of the sensitivity analyses, what is the most likely explanation of the 

differences found, and do these differences fall within estimated uncertainty limits or are 

updates of the emissions needed. These findings are then used to update and optimise 

the Sentinel 1-2-3 emission estimates. 

The results of the comparison of IFS/CAMS model simulation with updated Sentinel 1-2-3 

emissions and Sentinel-5p observations are evaluated against the uncertainty ranges 

derived from the model sensitivity tests. 

In addition, these results are also evaluated against limitations of the sensitivity analysis. 

Certain sensitivities may be difficult to capture and/or constrained with the existing 

IFS/CAMS model setup up. Certain processes may not be captured or resolved at the 
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desired scales, may be difficult to constrain due to limited or missing information and 

data, or may be difficult to tailor as a whole (e.g. optimise an entire atmospheric chemistry 

scheme). 

Finally, other uncertainties are explored and characterised on a best-effort-basis, for 

example assumptions about parameters and parameter values (e.g. emission factors), 

observations and methods. This is by no means a simple and straightforward exercise 

and may result in an incomplete analysis but it is important to identify how fire emission 

estimates can be further improved. 

4.5 IFS baseline results with GFAS and Sense4Fire emissions 

Figure 23 shows a comparison of IFS simulated tropospheric NO2 columns and Sentinel -

5p when using the GFAS biomass burning emissions on 10 September 2020. The 

comparison is shown for a larger region over the Amazon than originally defined within 

the Sense4Fire project (black box in the plots).  

The scatter plot shows that there is a reasonable agreement between simulated and 

observed tropospheric NO2 columns but that there are some fire hotspots where IFS 

overestimates tropospheric NO2.  

 

Figure 23: Comparison of IFS simulated tropospheric NO2 columns with GFAS emissions. The upper left panel 

represents applying the Sentinel-5p tropospheric NO2 columns averaging kernel, upper middle panel without 

applying the averaging kernel) and Sentinel-5p tropospheric NO2 column measurements (upper right). The 

differences between IFS and Sentinel-5p tropospheric NO2 columns are shown in the lower left plot (absolute 

differences) and lower middle plot (relative differences). The lower right plot shows the scatter plot and several 

statistics and linear fits. Results are just for illustration purposes.  
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These data can also be accumulated into a probability distribution as shown in Figure 24, 

in this case for the originally defined Amazon test area (black box in Figure 23) but for all 

data in August and September 2020. Figure 25 show the same results but for the entire 

Amazon region shown in Figure 23. Results reveal a fair agreement between modelled 

and observed tropospheric NO2 columns but again some significant overestimation of 

NO2 emissions for certain grid points. These overestimations of tropospheric NO2 

columns does not disappear or diminish for the S4F-Cardiff emission estimates compared 

to the GFAS emissions. If anything, there are a few IFS grid points for which the bias is 

even larger with Sense4Fire emissions compared to GFAS emissions. 
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Figure 24: Probability distribution IFS simulated and Sentinel-5p observed tropospheric NO2 columns for the 

originally selected Sense4Fire Amazon test area (black box in Figure 23) for all data in the period August-September 

2020. Results are for illustration purposes. 

 
Figure 25: As Figure 24 but for the larger Amazon region as shown in Figure 23. Note the different axis ranges. 

Results are for illustration purposes. 

 
Figure 26: As Figure 25 but for carbon monoxide total columns and for the larger Amazon region shown in Figure 

23 

 

Figure 26 shows the comparison of model CO with Sentinel5p observations, using GFAS 

and S4F-Cardiff emissions respectively but for the entire Amazon region as shown in 
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Figure 23. Indicated are also some statistics of the comparison and linear regression fits. 

There is a thin grey line indicating the 1:1 line. Results are for illustration purposes. The 

comparison with GFAS emissions reveals a significant low bias (GFAS emissions too small) 

by more than 40 % and for very large CO columns by more than 70 %. In this case the 

Sense4Fire emissions significantly improve the comparison between model simulations 

and observations compared to the simulations with GFAS emissions. With the Sense4Fire 

emissions this bias is significantly reduced (approximately 20 %; including the large CO 

column bias of simulation b2bd) and the bias falls well within the data spread. The 

Sense4Fire emissions thus significantly improve the comparison with S5p CO total column 

data. 

 
Figure 27: Left plot as in Figure 24 for the baseline GFAS emission but for NO2 tropospheric columns and for the 

larger Amazon region shown in Figure 25. The right plot histogram colour coding displays the average GFAS NO2 

emission rate for each histogram interval. Figure based on all daily data in the period August-September 2020. 

Further exploration of the GFAS NO2 emissions reveals that for the smaller NO2 columns 

(< 5×1015 molecules cm-2) there is quite a reasonable agreement with Sentinel-5P 

observations (Figure 19). The distribution is confined around the 1:1 line although with a 

large spread. This relatively large spread is possibly related to spatial misrepresentation 

of exact emission locations due to the large IFS grid size relative to the actual fire sizes 

and S5p pixel sizes. Detailed exploration of IFS simulations, emission data, and Sentinel-

5p observations has started aiming to shed more light on how well daily small scale fires 

and fire emissions are presented in the IFS simulations and emission databases. 

For the comparatively large modelled NO2 columns (>1x1016 molecules cm-2) the average 

GFAS emission rate is also larger (Figure 25 right panel). The deviating IFS NO2 columns 

thus are associated with larger GFAS fire emissions. Note the logarithmic scale in the right 

panel in Figure 25, suggesting that the apparent model NO2 column bias is associated with 

emissions of one and up to two orders of magnitude larger than the emission domain 

where Sentinel-5p and IFS agree on NO2 column amounts.  
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4.6 IFS sensitivity simulations results 

Section 4.5 revealed that the GFAS fire emission database underestimated CO emissions 

and overestimated NO2 emissions, in particular for large fires. Although the S4F-Cardiff 

emissions resulted in a significant improvement in IFS simulated CO columns, the same 

was not the case for IFS simulated NO2 columns. On the contrary, results are even slightly 

worse for Sense4Fire emissions. 

Here we further explore this GFAS/ Sense4Fire NO2 emission bias. Although spatially large 

fires cover only a relatively small area most fires are small, the amount of emissions is 

dominated by those large fires. For example, although fires with GFAS emission rates 

larger than 1×10-10 kg m-2 s-1 cover less than 10 % of the fire area in the “larger” Amazon 

region, they emit more than 40 % of the total fire emitted NO2 in this region. Similarly, 

GFAS fires emitting an order of magnitude smaller (< 1×10-11 kg m-2 s-1) only emit 5% of 

the total GFAS NO2 emissions in this region but cover almost 60 % of the fire area. Since 

fire NO2 emissions are indicative of fire type and the burning process, a significant GFAS 

NO2 emission bias may also translate into a significant GFAS carbon emission bias 

(regardless of CO, as Sentinel-5p observations of CO and NO2 over fires are not well 

correlated).  

To further explore the GFAS/S4F-Cardiff NO2 emission bias a number of IFS sensitivity 

experiments were performed: 

 T1. Sense4Fire emissions with a IFS sub-grid emission plume parameterization (expid b2bk) 

 T2. no GFAS fire emissions (NO2 and CO) (expid b2bl) 

 T3. GFAS NO2 emissions limited to a maximum of 1×10-10 kg m-2 s-1 (expid b2by) 

 T4. GFAS NO2 emissions limited to a maximum of 3×10-10 kg m-2 s-1 (expid b2c4) 

 T5. Sense4Fire NO2 emissions limited to a maximum of 3×10-10 kg m-2 s-1 (expid b2c6) 

The NO2 emission limits for T3, T4 and T5 were based visually estimating where in Figure 

20 IFS NO2 columns start to deviate from Sentinel-5p NO2 columns. The T1 results are not 

shown and discussed as the simulation did not result into a significant change in the IFS 

NO2 column bias here. For T2 – no GFAS fire emissions – IFS obviously underestimates 

most Sentinel-5p NO2 columns. Only for column amounts smaller than 2×1015 molecules 

cm-2 IFS and Sentinel-5p are consistent. This does indicate that there some “background” 

NO2 not associated with fires, possibly biogenic and/or anthropogenic of origin but whose 

emissions are small in magnitude relative to the fire emissions in the regions. For the 

three “upper limited emission” simulations T3-T5 the large fire bias is significantly 

reduced, as intended. Note that based on this analysis it is not possible to assess which 

upper limit threshold and which emission database (GFAS or Sense4Fire) performs better. 

Nevertheless, limiting large fire NO2 emissions in IFS simulations does provide directions 

on the type of fires to analyse in more detail and on a case-by-case basis. 
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Figure 28: as in Figure 25 for four IFS sensitivity simulations and for the Amazon study region. All daily data in the 

period August-September 2020. 

 

Figure 29 shows an example of a single day IFS T3 simulation over the larger Amazon 

region (as in Figure 23). In this simulation S4F-Cardiff NO2 emissions were limited to a 

maximum of 3×10-10 kg m-2 s-1. The “NO2 hot spots” that were present in the baseline IFS 

GFAS simulation have thereby vanished and the simulation visually appears more similar 

to what was observed by Sentinel-5p. The large outliers have disappeared from the scatter 

plot (lower right panel) and from difference plot (lower left panel). Note that the statistics 

are dominated by grid points without fire emissions, hence not all statistics automatically 

improve. 

T2 

T4

 

T5

 

T3
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Figure 29: As Figure 23 (10 September 2020) but for the IFS sensitivity simulation T5 with S4F NO2 emissions limited 

to a maximum of 3×10-10 kg m-2 s-1 (expid b2c6). 

 

4.7 Intercomparison and optimization of fire emissions 

Here we present an intercomparison of the various emission estimates developed and 

used in Sense4Fire. Figure 28 shows that over the Amazon region the S4F-Cardiff 

emissions have increased substantially compared to those estimated from GFAS, 

although the timing is well matched. This explains the higher model CO columns, which 

are in better agreement than those using the GFAS emissions, providing evidence that the 

S4F-Cardiff carbon emissions are realistic. Also the emission estimates using the S4F 

model described in Section 3 are included for reference (TUD-S4F.S using Song et al. land 

cover). These emissions have not been used in an actual IFS model experiment, but an 

intercomparison to the GFAS and S4F-Cardiff emissions indicates that the CO emission 

totals are in a comparable range. 
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Figure 30: Intercomparison of GFAS, CU-FRP KNMI-S5p and TUD-S4F (TUD-S4F.S using Song et al. land cover as 

input) estimates of CO emissions over the Amazon, August-October 2020. 

 

An experiment using the standard GFAS fire NOx emissions globally, but replaced with CU-

FRP emissions over the Amazon study region, has been evaluated against Sentinel-5p 

observations,Figure 31. We find considerable positive model biases over the Amazon, as 

also described in the previous section, while negative model biases are seen over the 

southern Africa study region.  

 

 

Figure 31: Left: monthly mean Sentinel-5p observations of tropospheric NO2 for September 2020. Middle: Model 

bias using standard GFAS andGFA-S4F-FRP emissions over the Amazon. Right: model bias when using KNMI-S5p-

based optimised fire emissions. 

 

Where a-priori fire emissions are non-zero we attribute model biases to uncertainty in the 

fire emissions, and optimise them following Castellanos et al (2014). The resulting 

optimised emissions are presented in Figure 31. Based on this the GFA-S4F-FRP emissions 

over the Amazon appear in reasonable agreement, although a various peaks with high 

emission values benefit from a reduction. The same is apparent for the GFAS emission 

estimate over Siberia, beginning of August (not shown here), while over the southern 
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Africa study region the GFAS-based fire NOx emissions are under-estimated. An evaluation 

of the KNMI-S5p updated NOx emissions is also presented in this figure. This indeed 

illustrates that hotspots with strong positive model biases over the Amazon have 

disappeared, while the negative model bias over the southern Africa region is also 

improved. Time series showing the quantitative differences between the various emission 

estimates are given in Figure 32. 

  

Figure 32: Intercomparison of GFAS, TUD-S4F (using Song land cover) and GFA-S4F-FRP (CU-FRP) estimates of NOx 

emissions (Tg NO/day) over the Amazon, along with KNMI-S5p optimised S4F emissions based on Sentinel-5p 

observations. Also the GFAS and KNMI-S5p optimized emissions over the Taiga/Tundra study region in Sibera, and 

southern Africa are shown. 

 

4.8 Discussion 

4.8.1 Limitations and gap analysis 

The validation results are analysed from a data product improvement framework 

perspective, and some results can be used immediately within the Sense4Fire product 

development, in an iterative process, to improve its quality. More fundamental limitations, 

which cannot be resolved within the Sense4Fire project duration, will also be identified 

and described in terms of their complexity, and implementation requirements, which 

requires follow-up activities beyond the scope of this project. Finally, some of the 

improvements needed may fall outside of the project consortium capacity – for instance 

fundamental model refinement or improved quality of satellite data products – which 

would result in recommendations for additional research and/or development. 

Combined, the validation analysis and evaluation results should provide clear pathways 

towards improvement. 

4.8.2 Case-based analysis 

The evaluation so far has focussed on statistical analyses of large databases: months of 

daily data at high spatial resolution over large areas. 

This resulted in the identification of a significant large-fire bias in bottom-up NO2 

emissions. To better understand where this bias originates from a pilot study has started 

with a more detailed daily-case-based evaluation of fire emissions and simulation results. 

A first test case was identified for 8 September 2020 (Figure 33). The IFS results indicate 
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an NO2 hot spot between 52°W-52.5°W and 11.5°S-10.5°S which was not observed in 

Sentinel-5p measurements. The corresponding VIIRS image shows no clouds and a 

number of well discernible smoke plumes.  

Figure 34 shows the corresponding vegetation type from the ESA CCI land cover map as 

well as fires derived from VIIRS radiative power. The smoke plumes are clearly associated 

with VIIRS fires but predominantly occur in the western half of the area. The IFS/GFAS NO2 

hot spot occurs over a region where not many fires were identified by VIIRS. It is, however, 

a region where the vegetation type changes from rain forest (“tree broadleaved 

evergreen”) to shrubland, which can also be seen in the VIIRS image in Figure 33.  

Similarly, Figure 35 shows that the Sentinel-5p orbit-level tropospheric NO2 columns do 

not provide indications of large amounts of NO2 while further west and east NO2 hot spots 

are visible in the Sentinel-5p NO2 data.  

Interestingly, Figure 36 reveals that the IFS simulated NO2 columns using S4F-Cardiff 

emissions shows NO2 hot spots that spatially appear to better align with the VIIRS fire 

radiative power hot spots, although the simulated NO2 columns are still significantly 

overestimated compared to the sentinel-5p measurements.  

The results from the two IFS simulations using GFAS and S4F-Cardiff NO2 emissions lead 

to significantly different results. This Indicates that not only the absolute amounts of fire 

NO2 emissions are uncertain - especially for large fires – but that also the spatial 

distribution may differ largely from one fire emissions database to the other on the spatial 

scales of the actual fires. 

Finally, the GFAS emissions used for the IFS simulation results in figures 34 and 35 are in 

part based on MODIS FRP, which has a mid-morning overpass time that is approximately 

three hours earlier than the Sentinel-5p observations. This is not the case for the S4F-

Cardiff emissions shown in figure 37 that rely on VIIRS FRP, which is flying in what is called 

a “loose constellation” with Sentinel-5p (approximately 5 minute difference). It is 

imaginable that MODIS FRP and thus GFAS emissions may locally not be fully 

representative for the Sentinel-5p observations. On the other hand, comparison between 

VIIRS and MODIS FRP (Li et al., 2017) does not result in systematic biases large enough to 

explain systematic S5P-IFS NO2 differences as shown in figure 33. Also, simulations using 

S4F emissions based on the GFA algorithm which uses VIIRS FRP rather than MODIS FRP 

result in similar S5p-IFS NO2 differences as when using GFAS in IFS. Comparison of VIIRS 

and MODIS FRP-based NO2 emission estimates (Fu et al., 2022) do not reveal spatio-

temporal differences large enough to affect the main findings here. Hence although the 

use of MODIS FRP in GFAS definitely will cause some differences compared to using VIIRS-

FRP based emissions, they are insufficient to explain the larger IFS-Sentinel-5p NO2 

differences. Nevertheless, the importance of FRP as cause of inconsistencies between IFS 

simulations and Sentinel-5p observations will be made part of the trace back of these 

differences to individual bottom-up emission input parameters using the beta-method 

results for directly estimating NO2 emission from Sentinel-5p NO2 measurements. 
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Figure 33: IFS/GFAS simulated tropospheric NO2 columns (left) and corresponding gridded Sentinel-5p tropospheric 

NO2 columns with applying the averaging kernel (middle) and associated VIIRS RGB image (right) for the Sense4Fire 

Amazon test area on 8 September 2020.  

 

Figure 34: ESA CCI Vegetation type for the area and date presented in Figure 33. 

 The colors indicate the dominant vegetation type, the shading indicates grids where there is a significant second 

type vegetation (shading colours indicating the vegetation type). The bright green dots represent the associated 

VIIRS fire radiative power hot spots. Note that ESA CCI Vegetation type data is not explicitly used in GFAS. 
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Figure 35: Sentinel-5p orbit-level tropospheric NO2 columns (left) and overlaid on top of the vegetation type map of 

Figure 34 (right). The white rectangle in the left plot indicates the pixels with high NO2 in the IFS/GFAS experiment 

(see Figure 33 left). 

 

 

Figure 36: IFS simulation for the same date and region as Figure 33 but with Sense4Fire (University Cardiff) NO2 

emissions. 
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5 Summary and future developments 

The results of the evaluation of satellite-based fire emissions with Sentinel-5p CO and NO2 

column measurements has uncovered significant emission biases in state-of-the-art fire 

emission databases like GFAS. Some of these appear to be resolvable by including more 

(satellite)-based information, and the bottom-up fire emissions of CO based on the fire 

type classification (GFA-S4F) appear an improvement. The TUD-S4F data-model fusion 

approach allows to trace-back biases in estimated fire emissions to the used land cover 

or burned area datasets and how they affect the estimated fuel loads, fuel consumtpion 

and hence fire emissions.  

Biases in NO2 were not yet resolved. NOx emissions are overestimated by both GFAS and 

GFA-S4F in comparison to Sentinel-5p especially because of single extreme fires. The TUD-

S4F NOx emission estimates of extreme fires are lower which might not result in an 

overestimation of NOx fields. However, the comparison of TUD-S4F estimates with 

Sentinel-5p was not yet performed because of the much coarser temporal (10-daily) 

resolution. Those initial joint validation results of all components of the Sense4Fire project 

highlight the potential of obtaining novel information on fire dynamics and the need to 

consolidate and integrate the three different estimates.  
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